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Overall Presentation Goal 

Technical introduction to JavaServer Faces. 

Learn how to create JSF pages and components 
using the open source implementation, 'Smile'.



Speakers

● Edwin Mol

• Java Architect at Real Software.

• 5+ Years of designing and implementing J2EE 
solutions.

• Core developer of 'Smile'.

● Dimitry D'hondt

• Java Architect at Real Software.

• 3,5 Years of teaching J2EE + Designing and 
implementing J2EE applications.

• Core developer of 'Smile'.



Problem.

• Current web development 
•   -> too many technical details. 
•

• We need to raise the level of abstraction. 
•   (In standardised way.)



Agenda

● Introducing JSF.

● Basic structure. (Demo 1)

● 'Hello World !' in JSF. (Demo 2)

● Event handling.

● Writing a JSF component. (Demo 3)

● Data binding.

● State Management

● Struts vs. (or with ?) JSF.

● Smile : open source implementation.



Introducing JSF

● Component based presentation layer.

● Standardized (JSR-127)
• Component market.

• Reduces vendor lock-in.

● Raises the level of abstraction.
• Real components. (now: page,scriptlets,tags,...)

• Designers (Productivity).

• Dynamic page construction.

• Simplifies. (Overal direction of JCP)

• ...

● Answer to ASP.net



Basic structure (1/2)

● Component tree. (Composite - GoF)

● Example component tree :
• partsPanel (Grid Layout Manager – 1 column)

- addComponentPanel (Grid Layout Manager - 4 columns)

Label 'parentLabel'

Label 'typeLabel'

Label 'idLabel'

Dummy (filler)

HtmlSelectOneMenu 'parentCombo'

HtmlSelectOneMenu 'typeCombo'

HtmlInputText 'identifier'

HtmlCommandButton 'addButton'

- ruler

- resultsPanel

Dynamically added components...



Basic structure (2/2)

● JSF Lifecycle :
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JSP vs. Class-based Pages.

● Certain projects are document oriented. 
(e.g. On-line shop)
• JSP based model.

- Greatest control over layout.

- Mix hand-coded HTML with JSF.

- Combine with available JSP taglibs.

Even Struts ?

● Other projects are real applications in a 
browser.
• Class based model.

- No need to learn servlet/JSP technology

- Clean model.

- Simple.



Hello World ! (1/2)

<%@ taglib uri="http://java.sun.com/jsf/html" 
prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core" 
prefix="f" %>

<html>

<head>

<title>Welcome</title>

</head>

<body>

<f:use_faces>

<h:input_text value="hello JSP world !"/>

</f:use_faces>

</body>

</html>



Hello World ! (2/2)

public class HelloWorld implements Page {

  public void init(FacesContext ctx, UIComponent 
root) {

    Screen screen = new Screen();

    screen.setId("helloScreen");

    screen.setTitle("hello World application...");

    root.getChildren().add(screen);

    HtmlOutputLabel label = new HtmlOutputLabel();

    label.setValue("Hello World");

    screen.getChildren().add(label);

  }

}



Event handling (1/2)

● JSF has similar event handling model as 
swing

● UIComponent emits events and broadcasts 
it to event listeners

● All events subclass javax.faces.FacesEvent

● Phase identifier indicates where in lifecycle 
event should be processed

● Method binding makes it possible to handle 
events without registering a listener



Event handling (2/2)

● Registering an Actionlistener

•  JSP based pages:

<h:command_button label="Login">

<f:action_listener 
type="custom.MyActionListener"/>

</h:command_button>

• Class based pages

HtmlCommandButton loginButton = new 
HtmlCommandButton();

loginButton.addActionListener(new MyActionListener
());



Component by example (1/4)

● Example : Simple toolbar component.
• Toolbar class represents the toolbar.

• ToolbarRenderer class takes care of HTML rendering.

• ToolbarButton represents a single button on the 
toolbar.

• ToolbarButtonPressedEvent event that is fired when 
a toolbar button is pressed. (server-side)

• ToolbarButtonPressedListener event that is fired 
when a toolbar button is pressed. (server-side)

● Demo.
• Buttons.

• Toggle buttons.

• Tooltips.

• Left/Right buttons.

• seperators.



Component by example (2/4)

● Component class
• public Object saveState(FacesContext ctx)

- Returns a serializeable object that contains the 
state of the component.

• public void restoreState(FacesContext ctx, 
Object state)

- Does the opposite.

• Event handler registration (javabean style).



Component by example (3/4)

● Renderer class
• public void encodeEnd(FacesContext ctx, 
UIComponent component) throws IOException

- Takes care of rendering out the current toolbar 
state as HTML.

- Uses overlib to generate tooltips.

• public void decode(FacesContext ctx, 
UIComponent component)

- Takes care of the apply request values phase.

- Examines incoming request parameters to 
determine if and which button was pressed.



Component by example (4/4)

● Event handling

public class .. implements 
ToolbarButtonPressedListener {

  ..

  toolbar.addToolbarButtonPressedListener(this);

  ..

}

..

public void buttonPressed
(ToolbarButtonPressedEvent e) {

  log.info("toolbar button " + e.getButton().
getAction() + " was pressed.");

}



Data binding

● Direct connection to your model beans 
possible

● JSP 2.0 based

● Supports Read(rvalue) and Write(lvalue)

● Method binding facilitates dynamic method 
invocation of arbitrary public methods of 
arbitrary objects.



State management

● Transparent to developer 

● Different strategies possible
• Client side

• Server side

• Different compression schemes ...

● Client side state management emulates the 
behaviour of desktop applications

● Performance penalty for client side state 
management but scales better.



Struts vs. (or with ?) JSF

● JSF has higher abstraction level

● Tool support

● Struts as foundation, JSF as extention 
(McClanahan) 
• Transitional

● Foundation vs. User-Interface Framework 
(Kito Mann)

● Struts -> open-source is key to it's success

● JSF -> standard, but open-source 
implementation(s) remain important.



Smile

● Open source JSF implementation

● Focus on 
• JSP & Class based model

• Component library

• Designer application

• Documentation

• Support for UI testing/scripting.

● Overal goal: productivity

● Current version 0.3.2
• Implements Proposed Final Draft of specification without 

JSP tags.

● 0.4 will include JSP support

● http://smile.sourceforge.net



If You Only Remember One 
Thing…

JSF raises the level of abstraction, in a 
standards based way.



Questions ?


