
Open Source Java Server Faces

Edwin Mol & Dimitry D'Hondt

Java Architects

Real Software

Standardisation of presentation frameworks

Overall Presentation Goal

Technical introduction to JavaServer Faces.

Learn how to create JSF pages and components
using the open source implementation, 'Smile'.

Speakers

● Edwin Mol

• Java Architect at Real Software.

• 5+ Years of designing and implementing J2EE
solutions.

• Core developer of 'Smile'.

● Dimitry D'hondt

• Java Architect at Real Software.

• 3,5 Years of teaching J2EE + Designing and
implementing J2EE applications.

• Core developer of 'Smile'.

Problem.

• Current web development
• -> too many technical details.
•

• We need to raise the level of abstraction.
• (In standardised way.)

Agenda

● Introducing JSF.

● Basic structure. (Demo 1)

● 'Hello World !' in JSF. (Demo 2)

● Event handling.

● Writing a JSF component. (Demo 3)

● Data binding.

● State Management

● Struts vs. (or with ?) JSF.

● Smile : open source implementation.

Introducing JSF

● Component based presentation layer.

● Standardized (JSR-127)
• Component market.

• Reduces vendor lock-in.

● Raises the level of abstraction.
• Real components. (now: page,scriptlets,tags,...)

• Designers (Productivity).

• Dynamic page construction.

• Simplifies. (Overal direction of JCP)

• ...

● Answer to ASP.net

Basic structure (1/2)

● Component tree. (Composite - GoF)

● Example component tree :
• partsPanel (Grid Layout Manager – 1 column)

- addComponentPanel (Grid Layout Manager - 4 columns)

Label 'parentLabel'

Label 'typeLabel'

Label 'idLabel'

Dummy (filler)

HtmlSelectOneMenu 'parentCombo'

HtmlSelectOneMenu 'typeCombo'

HtmlInputText 'identifier'

HtmlCommandButton 'addButton'

- ruler

- resultsPanel

Dynamically added components...

Basic structure (2/2)

● JSF Lifecycle :

Faces
Request Restore

Component
Tree

Apply
Request
Values

Invoke
Application

Process
Validations

Update
Model
Values

Render
Response

Process
Events

Process
Events

Process
Events

Process
Events

Response
complete

Response
complete

Response
complete

Response
complete

Render Response

Conversion Errors/
Render Response

JSP vs. Class-based Pages.

● Certain projects are document oriented.
(e.g. On-line shop)
• JSP based model.

- Greatest control over layout.

- Mix hand-coded HTML with JSF.

- Combine with available JSP taglibs.

Even Struts ?

● Other projects are real applications in a
browser.
• Class based model.

- No need to learn servlet/JSP technology

- Clean model.

- Simple.

Hello World ! (1/2)

<%@ taglib uri="http://java.sun.com/jsf/html"
prefix="h" %>

<%@ taglib uri="http://java.sun.com/jsf/core"
prefix="f" %>

<html>

<head>

<title>Welcome</title>

</head>

<body>

<f:use_faces>

<h:input_text value="hello JSP world !"/>

</f:use_faces>

</body>

</html>

Hello World ! (2/2)

public class HelloWorld implements Page {

 public void init(FacesContext ctx, UIComponent
root) {

 Screen screen = new Screen();

 screen.setId("helloScreen");

 screen.setTitle("hello World application...");

 root.getChildren().add(screen);

 HtmlOutputLabel label = new HtmlOutputLabel();

 label.setValue("Hello World");

 screen.getChildren().add(label);

 }

}

Event handling (1/2)

● JSF has similar event handling model as
swing

● UIComponent emits events and broadcasts
it to event listeners

● All events subclass javax.faces.FacesEvent

● Phase identifier indicates where in lifecycle
event should be processed

● Method binding makes it possible to handle
events without registering a listener

Event handling (2/2)

● Registering an Actionlistener

• JSP based pages:

<h:command_button label="Login">

<f:action_listener
type="custom.MyActionListener"/>

</h:command_button>

• Class based pages

HtmlCommandButton loginButton = new
HtmlCommandButton();

loginButton.addActionListener(new MyActionListener
());

Component by example (1/4)

● Example : Simple toolbar component.
• Toolbar class represents the toolbar.

• ToolbarRenderer class takes care of HTML rendering.

• ToolbarButton represents a single button on the
toolbar.

• ToolbarButtonPressedEvent event that is fired when
a toolbar button is pressed. (server-side)

• ToolbarButtonPressedListener event that is fired
when a toolbar button is pressed. (server-side)

● Demo.
• Buttons.

• Toggle buttons.

• Tooltips.

• Left/Right buttons.

• seperators.

Component by example (2/4)

● Component class
• public Object saveState(FacesContext ctx)

- Returns a serializeable object that contains the
state of the component.

• public void restoreState(FacesContext ctx,
Object state)

- Does the opposite.

• Event handler registration (javabean style).

Component by example (3/4)

● Renderer class
• public void encodeEnd(FacesContext ctx,
UIComponent component) throws IOException

- Takes care of rendering out the current toolbar
state as HTML.

- Uses overlib to generate tooltips.

• public void decode(FacesContext ctx,
UIComponent component)

- Takes care of the apply request values phase.

- Examines incoming request parameters to
determine if and which button was pressed.

Component by example (4/4)

● Event handling

public class .. implements
ToolbarButtonPressedListener {

 ..

 toolbar.addToolbarButtonPressedListener(this);

 ..

}

..

public void buttonPressed
(ToolbarButtonPressedEvent e) {

 log.info("toolbar button " + e.getButton().
getAction() + " was pressed.");

}

Data binding

● Direct connection to your model beans
possible

● JSP 2.0 based

● Supports Read(rvalue) and Write(lvalue)

● Method binding facilitates dynamic method
invocation of arbitrary public methods of
arbitrary objects.

State management

● Transparent to developer

● Different strategies possible
• Client side

• Server side

• Different compression schemes ...

● Client side state management emulates the
behaviour of desktop applications

● Performance penalty for client side state
management but scales better.

Struts vs. (or with ?) JSF

● JSF has higher abstraction level

● Tool support

● Struts as foundation, JSF as extention
(McClanahan)
• Transitional

● Foundation vs. User-Interface Framework
(Kito Mann)

● Struts -> open-source is key to it's success

● JSF -> standard, but open-source
implementation(s) remain important.

Smile

● Open source JSF implementation

● Focus on
• JSP & Class based model

• Component library

• Designer application

• Documentation

• Support for UI testing/scripting.

● Overal goal: productivity

● Current version 0.3.2
• Implements Proposed Final Draft of specification without

JSP tags.

● 0.4 will include JSP support

● http://smile.sourceforge.net

If You Only Remember One
Thing…

JSF raises the level of abstraction, in a
standards based way.

Questions ?

